The Value of Antihypertensive Drugs: A Perspective on Medical Innovation

Presented at: Alliance for Aging Research Briefing

Genia Long
Vice President, Analysis Group, Inc.

February 28th, 2007
“The Value of Antihypertensive Drugs: A Perspective On Medical Innovation”

Study Co-Authors

David M. Cutler
Otto Eckstein Professor of Applied Economics, Harvard University

Ernst R. Berndt
Louis B. Seley Professor of Applied Economics, Massachusetts Institute of Technology

Genia Long, Jimmy Royer, Andree-Anne Fournier and Pierre Cremieux
Analysis Group, Inc.

Alicia Sasser
Federal Reserve Bank of Boston

Study Citation

U.S. age-adjusted death rates from coronary heart disease have fallen by two-thirds since the 1960s

Source: Vital Statistics of the United States, NCHS.
70% of the improvement in life expectancy over this period was due to cardiovascular disease improvement.

- Death from cancer: 0.2
- Death from pneumonia or influenza: 0.3
- Death from external causes: 0.4
- Death in infancy: 1.4
- Death from CVD: 4.9
- Total increase in life expectancy: 7.0

Risk factor progress is mixed: smoking, high cholesterol and hypertension are down, but overweight is up

Cardiovascular Disease Risk Factors in Adults, U.S., 1961-2001

Note: Hypertension is systolic blood pressure ≥ 140 mm Hg, diastolic blood pressure ≥ 90 mm Hg, or on antihypertensive medication. High cholesterol is $240+$ mg/dl. Overweight is BMI $25+$ kg/m2.

Source: NHIS for smoking (age 18+) and NHANES for the other risk factors (ages 20–74). As summarized in NHLBI Fact Book, 2005.
Our study questions

- Given current risk factors and behavior, what would blood pressures (BP) have been in the absence of antihypertensive therapy?

- What has been the impact of better controlled blood pressure on:
 - Number of heart attacks and strokes?
 - Deaths from heart attack and stroke?

- How much better could we do if all attained guideline blood pressures?

- What is the cost-benefit of investments in antihypertensive therapy?
 - In terms of life expectancy; excludes benefits from avoided medical costs, productivity losses
The research challenges

“Real world” experience may differ from that in clinical trials:

- Patient compliance rates may be lower
- Overall population may be more heterogeneous and may not experience the same clinical effect as a carefully selected study population
- Other factors affecting rates of disease (e.g., demographics, health habits) may differ or change over time

Many factors may have contributed to improvements observed:

- Other primary and secondary prevention efforts
- Improvement in acute treatment
- Changes in behavior and risk factors
Research approach: holding other factors constant to isolate the impact of better-controlled BP

Estimate regression model for untreated blood pressure

- Estimated from the “drug naïve” 1959-62 NHANES survey to model what BP would be without today’s treatments
- Blood pressure = a function of (age, race, gender, BMI, BMI², diabetes)

Predict untreated BP and compare to observed BP for 1999-00

- Apply model to current risk and demographic factors from the NHANES 1999-2000 survey to estimate what BPs would be in absence of treatment
- Compare to observed, actual blood pressures – the difference is attributed to the impact of antihypertensives

Calculate impact of improvement in BP on risk and number of deaths (2001), heart attack and stroke hospitalizations (2002)

- Using Framingham Heart Study risk equations, population life tables, hospital discharge figures
- Assign a monetary value to reductions in mortality and compare to average expenditures on antihypertensive medication to calculate a cost-benefit ratio
Results: antihypertensive therapy reduced average BP for U.S. men by 10 - 11%

Predicted and Observed Blood Pressure, Men, 1999-2000

Definitions: Optimal: SBP<120, DBP<80; Normal: SBP 120-129, DBP 80-84; High Normal: SBP 130-139, DBP 85-89; Stage I: SBP 140-159, DBP 90-99; Stage II Hypertension: SBP>=160, DBP>= 100

Average BP	Systolic	Diastolic
Predicted | 141.3 | 84.9
Observed | 127.1 | 75.8
% Reduction | 10.0% | 10.7%

Analysis Group
Results: antihypertensive therapy reduced average BP for U.S. women by 10 - 13%
Research results: Impact on U.S. health outcomes

- 86,000 excess premature deaths from CVD avoided (2001)
- 572,000 hospital discharges for stroke avoided (2002)
- 261,000 hospital discharges for heart attack avoided (2002)

Predicted and Observed Deaths, 2001, and Hospital Discharges for Stroke and MI, 2002, Men and Women

- Deaths from Major Cardiovascular Disease (2001)
- Hospital Discharges for Stroke (2002)
- Hospital Discharges for Myocardial Infarction (2002)

Legend:
- Observed
- Predicted Without Antihypertensives
- Predicted if All at Guidelines
How significant are these estimated reductions relative to some other causes of mortality?

- Would have approached all deaths from accidents (98,000, the 5th largest cause of death in 1999-00)
- Would have exceeded all deaths from influenza and pneumonia (64,000, the 7th largest cause of death)
- Roughly equivalent to the number of people who are estimated to die of medical errors annually
- Would have exceeded all deaths from motor vehicle accidents (42,000 in 2001)
There are still significant opportunities for improvement

If all untreated patients with Stage I or II hypertension had been treated and all achieved normal blood pressures

- An additional **89,000 fewer excess premature deaths from major cardiovascular disease** in the U.S. in 2001
- An estimated **278,000 fewer US hospital discharges for stroke** and **142,000 fewer discharges for myocardial infarctions** in 2002 than actually occurred

➢ So far, we have achieved *approximately half* of the potential health gains
Cost benefit: we calculate an approximate benefit-to-cost ratio of 10:1 for men and 6:1 for women

- Assume each year of additional life in good health is worth $90,000 a year
- Compare discounted lifetime costs for antihypertensive drugs with discounted benefits of additional years of life
- Including benefits other than extended life would increase calculated net benefits further:
 - Reduced hospitalizations for stroke and MI
 - Impact of antihypertensive drugs on quality of life, work productivity
Implications

With an aging population, the total burden of cardiovascular disease will increase:

- As one of the most significant modifiable health risks, and in light of the attractive cost-benefit ratio, hypertension control should be prioritized for outreach, education, and compliance efforts.

- Under-utilization of effective, cost-efficient therapies continues to be a major public health challenge.
Caveats

- Residual analysis – factors not controlled for could affect BP trends
 - Sensitivity analyses on sodium intake and exercise conducted; neither increased explanatory power of the model significantly

- Due to potential competing risks, estimates represent reductions in premature deaths due to cardiovascular disease
 - Reductions in total mortality from all causes in a given year may be lower